zmk_mf68/app/src/rgb_underglow.c

320 lines
6.8 KiB
C

/*
* Copyright (c) 2020 The ZMK Contributors
*
* SPDX-License-Identifier: MIT
*/
#include <device.h>
#include <init.h>
#include <kernel.h>
#include <math.h>
#include <stdlib.h>
#include <logging/log.h>
#include <drivers/led_strip.h>
#include <device.h>
LOG_MODULE_DECLARE(zmk, CONFIG_ZMK_LOG_LEVEL);
#define STRIP_LABEL DT_LABEL(DT_CHOSEN(zmk_underglow))
#define STRIP_NUM_PIXELS DT_PROP(DT_CHOSEN(zmk_underglow), chain_length)
enum rgb_underglow_effect {
UNDERGLOW_EFFECT_SOLID,
UNDERGLOW_EFFECT_BREATHE,
UNDERGLOW_EFFECT_SPECTRUM,
UNDERGLOW_EFFECT_SWIRL,
UNDERGLOW_EFFECT_NUMBER // Used to track number of underglow effects
};
struct led_hsb {
u16_t h;
u8_t s;
u8_t b;
};
struct rgb_underglow_state {
u16_t hue;
u8_t saturation;
u8_t brightness;
u8_t animation_speed;
u8_t current_effect;
u16_t animation_step;
bool on;
};
struct rgb_underglow_state state;
struct device *led_strip;
struct led_rgb pixels[STRIP_NUM_PIXELS];
static struct led_rgb hsb_to_rgb(struct led_hsb hsb)
{
double r, g, b;
u8_t i = hsb.h / 60;
double v = hsb.b / 100.0;
double s = hsb.s / 100.0;
double f = hsb.h / 360.0 * 6 - i;
double p = v * (1 - s);
double q = v * (1 - f * s);
double t = v * (1 - (1 - f) * s);
switch (i % 6)
{
case 0: r = v; g = t; b = p; break;
case 1: r = q; g = v; b = p; break;
case 2: r = p; g = v; b = t; break;
case 3: r = p; g = q; b = v; break;
case 4: r = t; g = p; b = v; break;
case 5: r = v; g = p; b = q; break;
}
struct led_rgb rgb = { r: r*255, g: g*255, b: b*255 };
return rgb;
}
static void zmk_rgb_underglow_effect_solid()
{
for (int i=0; i<STRIP_NUM_PIXELS; i++)
{
int hue = state.hue;
int sat = state.saturation;
int brt = state.brightness;
struct led_hsb hsb = { hue, sat, brt };
pixels[i] = hsb_to_rgb(hsb);
}
}
static void zmk_rgb_underglow_effect_breathe()
{
for (int i=0; i<STRIP_NUM_PIXELS; i++)
{
int hue = state.hue;
int sat = state.saturation;
int brt = abs(state.animation_step - 1200) / 12;
struct led_hsb hsb = { hue, sat, brt };
pixels[i] = hsb_to_rgb(hsb);
}
state.animation_step += state.animation_speed * 10;
if (state.animation_step > 2400) {
state.animation_step = 0;
}
}
static void zmk_rgb_underglow_effect_spectrum()
{
for (int i=0; i<STRIP_NUM_PIXELS; i++)
{
int hue = state.animation_step;
int sat = state.saturation;
int brt = state.brightness;
struct led_hsb hsb = { hue, sat, brt };
pixels[i] = hsb_to_rgb(hsb);
}
state.animation_step += state.animation_speed;
state.animation_step = state.animation_step % 360;
}
static void zmk_rgb_underglow_effect_swirl()
{
for (int i=0; i<STRIP_NUM_PIXELS; i++)
{
int hue = (360 / STRIP_NUM_PIXELS * i + state.animation_step) % 360;
int sat = state.saturation;
int brt = state.brightness;
struct led_hsb hsb = { hue, sat, brt };
pixels[i] = hsb_to_rgb(hsb);
}
state.animation_step += state.animation_speed * 2;
state.animation_step = state.animation_step % 360;
}
static void zmk_rgb_underglow_tick(struct k_work *work)
{
switch (state.current_effect)
{
case UNDERGLOW_EFFECT_SOLID:
zmk_rgb_underglow_effect_solid();
break;
case UNDERGLOW_EFFECT_BREATHE:
zmk_rgb_underglow_effect_breathe();
break;
case UNDERGLOW_EFFECT_SPECTRUM:
zmk_rgb_underglow_effect_spectrum();
break;
case UNDERGLOW_EFFECT_SWIRL:
zmk_rgb_underglow_effect_swirl();
break;
}
led_strip_update_rgb(led_strip, pixels, STRIP_NUM_PIXELS);
}
K_WORK_DEFINE(underglow_work, zmk_rgb_underglow_tick);
static void zmk_rgb_underglow_tick_handler(struct k_timer *timer)
{
k_work_submit(&underglow_work);
}
K_TIMER_DEFINE(underglow_tick, zmk_rgb_underglow_tick_handler, NULL);
static int zmk_rgb_underglow_init(struct device *_arg)
{
led_strip = device_get_binding(STRIP_LABEL);
if (led_strip) {
LOG_INF("Found LED strip device %s", STRIP_LABEL);
} else {
LOG_ERR("LED strip device %s not found", STRIP_LABEL);
return -EINVAL;
}
state = (struct rgb_underglow_state){
hue: 0,
saturation: 100,
brightness: 100,
animation_speed: 3,
current_effect: 0,
animation_step: 0,
on: true
};
k_timer_start(&underglow_tick, K_NO_WAIT, K_MSEC(50));
return 0;
}
int zmk_rgb_underglow_cycle_effect(int direction)
{
if (!led_strip) return -ENODEV;
if (state.current_effect == 0 && direction < 0) {
state.current_effect = UNDERGLOW_EFFECT_NUMBER - 1;
return 0;
}
state.current_effect += direction;
if (state.current_effect >= UNDERGLOW_EFFECT_NUMBER) {
state.current_effect = 0;
}
state.animation_step = 0;
return 0;
}
int zmk_rgb_underglow_toggle()
{
if (!led_strip) return -ENODEV;
state.on = !state.on;
if (state.on) {
state.animation_step = 0;
k_timer_start(&underglow_tick, K_NO_WAIT, K_MSEC(50));
} else {
for (int i=0; i<STRIP_NUM_PIXELS; i++)
{
pixels[i] = (struct led_rgb){ r: 0, g: 0, b: 0};
}
led_strip_update_rgb(led_strip, pixels, STRIP_NUM_PIXELS);
k_timer_stop(&underglow_tick);
}
return 0;
}
int zmk_rgb_underglow_change_hue(int direction)
{
if (!led_strip) return -ENODEV;
if (state.hue == 0 && direction < 0) {
state.hue = 350;
return 0;
}
state.hue += direction * CONFIG_ZMK_RGB_UNDERGLOW_HUE_STEP;
if (state.hue > 350) {
state.hue = 0;
}
return 0;
}
int zmk_rgb_underglow_change_sat(int direction)
{
if (!led_strip) return -ENODEV;
if (state.saturation == 0 && direction < 0) {
return 0;
}
state.saturation += direction * CONFIG_ZMK_RGB_UNDERGLOW_SAT_STEP;
if (state.saturation > 100) {
state.saturation = 100;
}
return 0;
}
int zmk_rgb_underglow_change_brt(int direction)
{
if (!led_strip) return -ENODEV;
if (state.brightness == 0 && direction < 0) {
return 0;
}
state.brightness += direction * CONFIG_ZMK_RGB_UNDERGLOW_BRT_STEP;
if (state.brightness > 100) {
state.brightness = 100;
}
return 0;
}
int zmk_rgb_underglow_change_spd(int direction)
{
if (!led_strip) return -ENODEV;
if (state.animation_speed == 1 && direction < 0) {
return 0;
}
state.animation_speed += direction;
if (state.animation_speed > 5) {
state.animation_speed = 5;
}
return 0;
}
SYS_INIT(zmk_rgb_underglow_init,
APPLICATION,
CONFIG_APPLICATION_INIT_PRIORITY);