esp_time/bom_rrd2.py

132 lines
3.6 KiB
Python
Raw Normal View History

#!/usr/bin/env python3
import urllib
import datetime
import json
import collections
import rrdtool
from weather_au import api
2022-01-31 11:00:27 +11:00
from dateutil import tz
2022-11-22 14:36:48 +11:00
from pyowm import OWM
owm = OWM('API KEY GOES HERE')
mgr = owm.weather_manager()
# Grab current temps from sensors around the house
#outside = rrdtool.fetch("/media/media/mqtt/ESP_b5952/temp/c.rrd", "AVERAGE")
#rows = outside[2][::-1]
#for data in rows:
# if data[0] is not None:
# outside_temp = data[0]
# break
2022-11-22 14:36:48 +11:00
# Grab outside temp from OpenWeatherMap
observation = mgr.one_call(lat=42.9696, lon=147.2004, exclude='minutely,hourly,daily', units='metric')
2022-11-22 14:31:44 +11:00
outside_temp = int(observation.current.temperature()['temp'])
2022-11-22 14:31:44 +11:00
#bedroom = rrdtool.fetch("/media/media/mqtt/ESP_b3fe20/temp.rrd", "AVERAGE")
#rows = bedroom[2][::-1]
#for data in rows:
# if data[0] is not None:
# bedroom_temp = int(data[0])
# break
2022-01-29 06:54:49 +11:00
bedroom_temp = 0
2022-01-29 06:54:49 +11:00
lounge = rrdtool.fetch("/media/media/mqtt/ESP_4c7682/temp.rrd", "AVERAGE")
rows = lounge[2][::-1]
2022-01-30 09:41:35 +11:00
try:
lounge_temp = int(rows[1][0])
except TypeError:
try:
lounge_temp = int(rows[2][0])
except TypeError:
lounge_temp = "N"
2022-01-30 09:41:35 +11:00
bom_icons = {
'sunny': 'SUNNY.JPG',
'clear': 'CLEAR.JPG',
'partly_cloudy': 'PCLOUD.JPG',
2022-01-29 06:54:49 +11:00
'mostly_sunny': 'PCLOUD.JPG',
'cloudy': 'CLOUDY.JPG',
'haze': 'HAZE.JPG',
'light_rain': 'LRAIN.JPG',
'wind': 'WIND.JPG',
2022-02-20 13:35:56 +11:00
'windy': 'WIND.JPG',
'fog': 'FOG.JPG',
'shower': 'SHOWER.JPG',
'rain': 'RAIN.JPG',
'dust': 'DUST.JPG',
'frost': 'FROST.JPG',
'snow': 'SNOW.JPG',
'storm': 'STORM.JPG',
'light_showers': 'LSHOWE.JPG',
2022-02-20 13:35:56 +11:00
'light_shower': 'LSHOWE.JPG',
'heavy_showers': 'HSHOWE.JPG',
'cyclone': 'CYCLON.JPG'
}
w = api.WeatherApi(search="longley+tas")
wdays_dict = w.forecasts_daily()
new = {}
weather = {}
# The first forecast period doesn't always have the temperature and other bits
# I get the overnight low and forecast to substitute when this happens.
2022-01-29 06:54:49 +11:00
if wdays_dict[0]['temp_min'] is None:
night = 1
2022-01-29 06:54:49 +11:00
weather['today'] = wdays_dict[0]
2022-01-31 17:03:13 +11:00
weather['tomorrow'] = wdays_dict[1]
weather['day_after'] = wdays_dict[2]
else:
night = 0
2022-01-31 11:00:27 +11:00
weather['today'] = wdays_dict[0]
weather['tomorrow'] = wdays_dict[1]
weather['day_after'] = wdays_dict[2]
utc_zone = tz.tzutc()
local_zone = tz.tzlocal()
if night:
for day in weather.keys():
new[day] = {}
if (day == 'today'):
new[day]['day'] = 'Tonight'
new[day]['max'] = weather['tomorrow']['temp_min']
new[day]['icon'] = bom_icons[weather['today']['icon_descriptor']]
else:
2022-01-31 11:00:27 +11:00
utc = datetime.datetime.strptime(weather[day]['date'], "%Y-%m-%dT%H:%M:%S%z")
utc.replace(tzinfo=utc_zone)
local_date = utc.astimezone(local_zone)
new[day]['day'] = local_date.strftime("%A")
2022-01-30 09:41:35 +11:00
new[day]['icon'] = bom_icons[weather[day]['icon_descriptor']]
new[day]['max'] = weather[day]['temp_max']
else:
for day in weather.keys():
new[day] = {}
2022-01-31 11:00:27 +11:00
utc = datetime.datetime.strptime(weather[day]['date'], "%Y-%m-%dT%H:%M:%S%z")
utc.replace(tzinfo=utc_zone)
local_date = utc.astimezone(local_zone)
new[day]['day'] = local_date.strftime("%A")
new[day]['icon'] = bom_icons[weather[day]['icon_descriptor']]
new[day]['max'] = weather[day]['temp_max']
new['current'] = {}
new['current']['outside'] = outside_temp
new['current']['bedroom'] = bedroom_temp
new['current']['lounge'] = lounge_temp
2022-01-30 09:41:35 +11:00
with open('/var/www/darksky/bom.json', 'w') as output:
output.write(json.dumps(new))
output.close()
2022-01-30 09:41:35 +11:00