bsidesbadge/src/icm20602.c

550 lines
14 KiB
C

/***** Includes *****/
#include <stdlib.h>
#include "icm20602.h"
/***** Defines *****/
#define REG_XG_OFFS_TC_H 0x04
#define REG_XG_OFFS_TC_L 0x05
#define REG_YG_OFFS_TC_H 0x07
#define REG_YG_OFFS_TC_L 0x08
#define REG_ZG_OFFS_TC_H 0x0A
#define REG_ZG_OFFS_TC_L 0x0B
#define REG_SELF_TEST_X_ACCEL 0x0D
#define REG_SELF_TEST_Y_ACCEL 0x0E
#define REG_SELF_TEST_Z_ACCEL 0x0F
#define REG_XG_OFFS_USRH 0x13
#define REG_XG_OFFS_USRL 0x14
#define REG_YG_OFFS_USRH 0x15
#define REG_YG_OFFS_USRL 0x16
#define REG_ZG_OFFS_USRH 0x17
#define REG_ZG_OFFS_USRL 0x18
#define REG_SMPLRT_DIV 0x19
#define REG_CONFIG 0x1A
#define REG_GYRO_CONFIG 0x1B
#define REG_ACCEL_CONFIG 0x1C
#define REG_ACCEL_CONFIG_2 0x1D
#define REG_LP_MODE_CFG 0x1E
#define REG_ACCEL_WOM_X_THR 0x20
#define REG_ACCEL_WOM_Y_THR 0x21
#define REG_ACCEL_WOM_Z_THR 0x22
#define REG_FIFO_EN 0x23
#define REG_FSYNC_INT 0x36
#define REG_INT_PIN_CFG 0x37
#define REG_INT_ENABLE 0x38
#define REG_FIFO_WM_INT_STATUS 0x39
#define REG_INT_STATUS 0x3A
#define REG_ACCEL_XOUT_H 0x3B
#define REG_ACCEL_XOUT_L 0x3C
#define REG_ACCEL_YOUT_H 0x3D
#define REG_ACCEL_YOUT_L 0x3E
#define REG_ACCEL_ZOUT_H 0x3F
#define REG_ACCEL_ZOUT_L 0x40
#define REG_TEMP_OUT_H 0x41
#define REG_TEMP_OUT_L 0x42
#define REG_GYRO_XOUT_H 0x43
#define REG_GYRO_XOUT_L 0x44
#define REG_GYRO_YOUT_H 0x45
#define REG_GYRO_YOUT_L 0x46
#define REG_GYRO_ZOUT_H 0x47
#define REG_GYRO_ZOUT_L 0x48
#define REG_SELF_TEST_X_GYRO 0x50
#define REG_SELF_TEST_Y_GYRO 0x51
#define REG_SELF_TEST_Z_GYRO 0x52
#define REG_FIFO_WM_TH1 0x60
#define REG_FIFO_WM_TH2 0x61
#define REG_SIGNAL_PATH_RESET 0x68
#define REG_ACCEL_INTEL_CTRL 0x69
#define REG_USER_CTRL 0x6A
#define REG_PWR_MGMT_1 0x6B
#define REG_PWR_MGMT_2 0x6C
#define REG_I2C_IF 0x70
#define REG_FIFO_COUNTH 0x72
#define REG_FIFO_COUNTL 0x73
#define REG_FIFO_R_W 0x74
#define REG_WHO_AM_I 0x75
#define REG_XA_OFFSET_H 0x77
#define REG_XA_OFFSET_L 0x78
#define REG_YA_OFFSET_H 0x7A
#define REG_YA_OFFSET_L 0x7B
#define REG_ZA_OFFSET_H 0x7D
#define REG_ZA_OFFSET_L 0x7E
#define REG_WHO_AM_I_CONST 0X12
/***** Macros *****/
#define ON_ERROR_GOTO(cond, symbol) \
if (!(cond)) { goto symbol; }
// extra steps, but I'm paranoid about some compilers/systems not handling the
// conversion from uint8_t to int16_t correctly
#define UINT8_TO_INT16(dst, src_high, src_low) \
do { \
dst = (src_high); \
dst <<= 8; \
dst |= (src_low); \
} while (0);
/***** Local Data *****/
// TODO: Look into getting real temp sensitivity.
static float _temp_sensitivity = 326.8;
/***** Local Functions *****/
/// Used to convert raw accelerometer readings to G-force.
float
_get_accel_sensitivity(enum icm20602_accel_g accel_g)
{
float f = 0.0;
switch (accel_g) {
case (ICM20602_ACCEL_RANGE_2G):
f = 16384.0;
break;
case (ICM20602_ACCEL_RANGE_4G):
f = 8192.0;
break;
case (ICM20602_ACCEL_RANGE_8G):
f = 4096.0;
break;
case (ICM20602_ACCEL_RANGE_16G):
f = 2048.0;
break;
}
return f;
}
/// Used to convert raw gyroscope readings to degrees per second.
float
_get_gyro_sensitivity(enum icm20602_gyro_dps gyro_dps)
{
float f = 0;
switch (gyro_dps) {
case (ICM20602_GYRO_RANGE_250_DPS):
f = 131.0;
break;
case (ICM20602_GYRO_RANGE_500_DPS):
f = 65.5;
break;
case (ICM20602_GYRO_RANGE_1000_DPS):
f = 32.8;
break;
case (ICM20602_GYRO_RANGE_2000_DPS):
f = 16.4;
break;
}
return f;
}
int8_t
_read_data(struct icm20602_dev * dev, uint8_t reg, uint8_t * buf, uint32_t len)
{
int8_t r = 0;
if ((!dev->hal_wr) || (!dev->hal_rd) || (!dev->hal_sleep)) {
return false;
}
if (dev->mutex_lock) {
dev->mutex_lock(dev->id);
}
r = dev->hal_rd(dev->id, reg, buf, len);
if (dev->mutex_unlock) {
dev->mutex_unlock(dev->id);
}
return r;
}
/***** Global Functions *****/
int8_t
icm20602_init(struct icm20602_dev * dev)
{
uint8_t tmp = 0;
int8_t r = 0;
if ((!dev->hal_wr) || (!dev->hal_rd) || (!dev->hal_sleep)) {
return false;
}
// General Procedure:
// 1. reset chip
// 2. set clock for PLL for optimum performance as documented in datasheet
// 3. place accelerometer and gyroscope into standby
// 4. disable fifo
// 5. configure chip
// 6. enable accelerometer and gyroscope
if (dev->mutex_lock) {
dev->mutex_lock(dev->id);
}
// full reset of chip
tmp = 0x80;
r = dev->hal_wr(dev->id, REG_PWR_MGMT_1, &tmp, 1);
ON_ERROR_GOTO((0 == r), return_err);
// TODO: better reset delay value
dev->hal_sleep(1000);
// verify we are able to read from the chip
r = dev->hal_rd(dev->id, REG_WHO_AM_I, &tmp, 1);
ON_ERROR_GOTO((0 == r), return_err);
if (REG_WHO_AM_I_CONST != tmp) {
r = -1;
ON_ERROR_GOTO((0 == r), return_err);
}
// set clock to internal PLL
tmp = 0x01;
r = dev->hal_wr(dev->id, REG_PWR_MGMT_1, &tmp, 1);
ON_ERROR_GOTO((0 == r), return_err);
// place accel and gyro on standby
tmp = 0x3F;
r = dev->hal_wr(dev->id, REG_PWR_MGMT_2, &tmp, 1);
ON_ERROR_GOTO((0 == r), return_err);
// disable fifo
tmp = 0x00;
r = dev->hal_wr(dev->id, REG_USER_CTRL, &tmp, 1);
ON_ERROR_GOTO((0 == r), return_err);
if (dev->i2c_disable) {
// disable chip I2C communications
tmp = 0x40;
r = dev->hal_wr(dev->id, REG_I2C_IF, &tmp, 1);
ON_ERROR_GOTO((0 == r), return_err);
}
if (dev->use_accel) {
if (ICM20602_ACCEL_DLPF_BYPASS_1046_HZ == dev->accel_dlpf) {
tmp = (1 << 3);
r = dev->hal_wr(dev->id, REG_ACCEL_CONFIG_2, &tmp, 1);
ON_ERROR_GOTO((0 == r), return_err);
}
else {
tmp = dev->accel_dlpf;
r = dev->hal_wr(dev->id, REG_ACCEL_CONFIG_2, &tmp, 1);
ON_ERROR_GOTO((0 == r), return_err);
}
tmp = (dev->accel_g) << 2;
r = dev->hal_wr(dev->id, REG_ACCEL_CONFIG, &tmp, 1);
ON_ERROR_GOTO((0 == r), return_err);
}
if (dev->use_gyro) {
if (ICM20602_GYRO_DLPF_BYPASS_3281_HZ == dev->gyro_dlpf) {
// bypass dpf and set dps
tmp = 0x00;
r = dev->hal_wr(dev->id, REG_CONFIG, &tmp, 1);
ON_ERROR_GOTO((0 == r), return_err);
tmp = (dev->gyro_dps << 3) | 0x02; // see table page 37 of datasheet
r = dev->hal_wr(dev->id, REG_GYRO_CONFIG, &tmp, 1);
ON_ERROR_GOTO((0 == r), return_err);
}
else if (ICM20602_GYRO_DLPF_BYPASS_8173_HZ == dev->gyro_dlpf) {
// bypass dpf and set dps
tmp = 0x00;
r = dev->hal_wr(dev->id, REG_CONFIG, &tmp, 1);
ON_ERROR_GOTO((0 == r), return_err);
tmp = (dev->gyro_dps << 3) | 0x01; // see table page 37 of datasheet
r = dev->hal_wr(dev->id, REG_GYRO_CONFIG, &tmp, 1);
ON_ERROR_GOTO((0 == r), return_err);
}
else {
// configure dpf and set dps
tmp = dev->gyro_dlpf;
r = dev->hal_wr(dev->id, REG_CONFIG, &tmp, 1);
ON_ERROR_GOTO((0 == r), return_err);
tmp = dev->gyro_dps << 3;
r = dev->hal_wr(dev->id, REG_GYRO_CONFIG, &tmp, 1);
ON_ERROR_GOTO((0 == r), return_err);
}
}
// enable FIFO if requested
tmp = ((dev->use_accel) && (dev->accel_fifo)) ? 0x08 : 0x00;
tmp |= ((dev->use_gyro) && (dev->gyro_fifo)) ? 0x10 : 0x00;
r = dev->hal_wr(dev->id, REG_FIFO_EN, &tmp, 1);
ON_ERROR_GOTO((0 == r), return_err);
// configure sample rate divider (TODO: is this gyro only?)
// note: SAMPLE_RATE = INTERNAL_SAMPLE_RATE / (1 + SMPLRT_DIV)
tmp = (0 != dev->sample_rate_div) ? dev->sample_rate_div - 1 : 1;
r = dev->hal_wr(dev->id, REG_SMPLRT_DIV, &tmp, 1);
ON_ERROR_GOTO((0 == r), return_err);
tmp = 0;
tmp |= (dev->use_gyro) ? 0 : 0x07; // 0 - on, 1 - disabled
tmp |= (dev->use_accel) ? 0 : 0x38; // 0 - on, 1 - disabled
r = dev->hal_wr(dev->id, REG_PWR_MGMT_2, &tmp, 1);
ON_ERROR_GOTO((0 == r), return_err);
return_err:
if (dev->mutex_unlock) {
dev->mutex_unlock(dev->id);
}
return r;
}
int8_t
icm20602_read_accel(struct icm20602_dev * dev, float * p_x, float * p_y,
float * p_z)
{
float accel_sensitivity;
int16_t x, y, z;
int8_t r = 0;
accel_sensitivity = _get_accel_sensitivity(dev->accel_g);
r = icm20602_read_accel_raw(dev, &x, &y, &z);
if (0 == r) {
*p_x = ((float) x) / accel_sensitivity;
*p_y = ((float) y) / accel_sensitivity;
*p_z = ((float) z) / accel_sensitivity;
}
return r;
}
int8_t
icm20602_read_gyro(struct icm20602_dev * dev, float * p_x, float * p_y,
float * p_z)
{
float gyro_sensitivity;
int16_t x, y, z;
int8_t r = 0;
gyro_sensitivity = _get_gyro_sensitivity(dev->gyro_dps);
r = icm20602_read_gyro_raw(dev, &x, &y, &z);
if (0 == r) {
*p_x = ((float) x) / gyro_sensitivity;
*p_y = ((float) y) / gyro_sensitivity;
*p_z = ((float) z) / gyro_sensitivity;
}
return r;
}
int8_t
icm20602_read_data(struct icm20602_dev * dev, float * p_ax, float * p_ay,
float * p_az, float * p_gx, float * p_gy, float * p_gz, float * p_t)
{
float accel_sensitivity;
float gyro_sensitivity;
int16_t ax, ay, az, gx, gy, gz, t;
int8_t r = 0;
accel_sensitivity = _get_accel_sensitivity(dev->accel_g);
gyro_sensitivity = _get_gyro_sensitivity(dev->gyro_dps);
r = icm20602_read_data_raw(dev, &ax, &ay, &az, &gx, &gy, &gz, &t);
if (0 == r) {
*p_ax = ((float) ax) / accel_sensitivity;
*p_ay = ((float) ay) / accel_sensitivity;
*p_az = ((float) az) / accel_sensitivity;
*p_gx = ((float) gx) / gyro_sensitivity;
*p_gy = ((float) gy) / gyro_sensitivity;
*p_gz = ((float) gz) / gyro_sensitivity;
*p_t = ((float) t) / _temp_sensitivity;
}
return r;
}
int8_t
icm20602_read_accel_raw(struct icm20602_dev * dev, int16_t * p_x, int16_t * p_y,
int16_t * p_z)
{
uint8_t buf[8] = {0};
int8_t r = 0;
r = _read_data(dev, REG_ACCEL_XOUT_H, buf, 8);
if (0 == r) {
UINT8_TO_INT16(*p_x, buf[0], buf[1]);
UINT8_TO_INT16(*p_y, buf[2], buf[3]);
UINT8_TO_INT16(*p_z, buf[4], buf[5]);
// buf[6] and buf[7] hold temperature
}
return r;
}
int8_t
icm20602_read_gyro_raw(struct icm20602_dev * dev, int16_t * p_x, int16_t * p_y,
int16_t * p_z)
{
uint8_t buf[6] = {0};
int8_t r = 0;
r = _read_data(dev, REG_GYRO_XOUT_H, buf, 6);
if (0 == r) {
UINT8_TO_INT16(*p_x, buf[0], buf[1]);
UINT8_TO_INT16(*p_y, buf[2], buf[3]);
UINT8_TO_INT16(*p_z, buf[4], buf[5]);
}
return r;
}
int8_t
icm20602_read_data_raw(struct icm20602_dev * dev, int16_t * p_ax,
int16_t * p_ay, int16_t * p_az, int16_t * p_gx, int16_t * p_gy,
int16_t * p_gz, int16_t * p_t)
{
uint8_t buf[14] = {0};
int8_t r = 0;
r = _read_data(dev, REG_ACCEL_XOUT_H, buf, 14);
if (0 == r) {
UINT8_TO_INT16(*p_ax, buf[0], buf[1]);
UINT8_TO_INT16(*p_ay, buf[2], buf[3]);
UINT8_TO_INT16(*p_az, buf[4], buf[5]);
UINT8_TO_INT16(*p_t, buf[6], buf[7]);
UINT8_TO_INT16(*p_gx, buf[8], buf[9]);
UINT8_TO_INT16(*p_gy, buf[10], buf[11]);
UINT8_TO_INT16(*p_gz, buf[12], buf[13]);
}
return r;
}
int8_t
icm20602_read_accel_fifo(struct icm20602_dev * dev, float * p_x, float * p_y,
float * p_z)
{
float accel_sensitivity;
int16_t x, y, z;
int8_t r = 0;
accel_sensitivity = _get_accel_sensitivity(dev->accel_g);
r = icm20602_read_fifo_accel_raw(dev, &x, &y, &z);
if (0 == r) {
*p_x = ((float) x) / accel_sensitivity;
*p_y = ((float) y) / accel_sensitivity;
*p_z = ((float) z) / accel_sensitivity;
}
return r;
}
int8_t
icm20602_read_gyro_fifo(struct icm20602_dev * dev, float * p_x, float * p_y,
float * p_z)
{
float gyro_sensitivity;
int16_t x, y, z;
int8_t r = 0;
gyro_sensitivity = _get_gyro_sensitivity(dev->gyro_dps);
r = icm20602_read_fifo_gyro_raw(dev, &x, &y, &z);
if (0 == r) {
*p_x = ((float) x) / gyro_sensitivity;
*p_y = ((float) y) / gyro_sensitivity;
*p_z = ((float) z) / gyro_sensitivity;
}
return r;
}
int8_t
icm20602_read_fifo_data(struct icm20602_dev * dev, float * p_ax, float * p_ay,
float * p_az, float * p_gx, float * p_gy, float * p_gz, float * p_t)
{
float accel_sensitivity;
float gyro_sensitivity;
int16_t ax, ay, az, gx, gy, gz, t;
int8_t r = 0;
accel_sensitivity = _get_accel_sensitivity(dev->accel_g);
gyro_sensitivity = _get_gyro_sensitivity(dev->gyro_dps);
r = icm20602_read_fifo_data_raw(dev, &ax, &ay, &az, &gx, &gy, &gz, &t);
if (0 == r) {
*p_ax = ((float) ax) / accel_sensitivity;
*p_ay = ((float) ay) / accel_sensitivity;
*p_az = ((float) az) / accel_sensitivity;
*p_gx = ((float) gx) / gyro_sensitivity;
*p_gy = ((float) gy) / gyro_sensitivity;
*p_gz = ((float) gz) / gyro_sensitivity;
*p_t = ((float) t) / _temp_sensitivity;
}
return r;
}
int8_t
icm20602_read_fifo_accel_raw(struct icm20602_dev * dev, int16_t * p_x,
int16_t * p_y, int16_t * p_z)
{
uint8_t buf[6] = {0};
int8_t r = 0;
r = _read_data(dev, REG_FIFO_R_W, buf, 6);
if (0 == r) {
UINT8_TO_INT16(*p_x, buf[0], buf[1]);
UINT8_TO_INT16(*p_y, buf[2], buf[3]);
UINT8_TO_INT16(*p_z, buf[4], buf[5]);
}
return r;
}
int8_t
icm20602_read_fifo_gyro_raw(struct icm20602_dev * dev, int16_t * p_x,
int16_t * p_y, int16_t * p_z)
{
uint8_t buf[6] = {0};
int8_t r = 0;
r = _read_data(dev, REG_FIFO_R_W, buf, 6);
if (0 == r) {
UINT8_TO_INT16(*p_x, buf[0], buf[1]);
UINT8_TO_INT16(*p_y, buf[2], buf[3]);
UINT8_TO_INT16(*p_z, buf[4], buf[5]);
}
return r;
}
int8_t
icm20602_read_fifo_data_raw(struct icm20602_dev * dev, int16_t * p_ax,
int16_t * p_ay, int16_t * p_az, int16_t * p_gx, int16_t * p_gy,
int16_t * p_gz, int16_t * p_t)
{
uint8_t buf[14] = {0};
int8_t r = 0;
r = _read_data(dev, REG_FIFO_R_W, buf, 14);
if (0 == r) {
UINT8_TO_INT16(*p_ax, buf[0], buf[1]);
UINT8_TO_INT16(*p_ay, buf[2], buf[3]);
UINT8_TO_INT16(*p_az, buf[4], buf[5]);
UINT8_TO_INT16(*p_t, buf[6], buf[7]);
UINT8_TO_INT16(*p_gx, buf[8], buf[9]);
UINT8_TO_INT16(*p_gy, buf[10], buf[11]);
UINT8_TO_INT16(*p_gz, buf[12], buf[13]);
}
return r;
}