6502/vasm/cpus/tr3200/cpu.c

527 lines
13 KiB
C
Raw Normal View History

/* cpu.c tr3200 cpu description file */
/* (c) in 2014 by Luis Panadero Guardeno */
#include "vasm.h"
/*#define CPU_DEBUG (1)*/
#ifdef CPU_DEBUG
#define OPERAND_DEBUG (1)
#define INSTR_DEBUG (1)
#endif
char *cpu_copyright="vasm TR3200 cpu module v0.1.2 by Luis Panadero Guardeno";
char *cpuname="tr3200";
int bitsperbyte=8;
int bytespertaddr=4;
mnemonic mnemonics[]={
#include "opcodes.h"
};
int mnemonic_cnt=sizeof(mnemonics)/sizeof(mnemonics[0]);
static taddr opsize(operand *p, unsigned char num_operands, section *sec, taddr pc);
/* parse instruction */
char *parse_instruction(char *s, int *inst_len, char **ext, int *ext_len,
int *ext_cnt)
{
char* inst = s;
#ifdef CPU_DEBUG
fprintf(stderr, "parse_inst : \"%.*s\"\n", *inst_len, s);
#endif
/*
while (*s && !isspace((unsigned char)*s))
s++;
*inst_len = s - inst; */
return s;
}
/* Sets op if is a valid register */
static int parse_reg(char **p, int len, operand *op)
{
char *rp = skip(*p);
int reg = -1;
if (len < 2) {
return 0;
}
if (*rp != '%') {
return 0;
}
rp++;
if (tolower((unsigned char)rp[0]) != 'r') {
/* Could be y, bp, sp, ia or flags */
if (len == 2 && tolower((unsigned char)rp[0]) == 'y') {
rp++;
*p = skip(rp);
op->type = OP_GPR;
op->reg = 11;
return 1;
} else if ( len == 3 && (tolower((unsigned char)rp[0]) == 'b')
&& (tolower((unsigned char)rp[1]) == 'p') ) {
rp++; rp++;
*p = skip(rp);
op->type = OP_GPR;
op->reg = 12;
return 1;
} else if ( len == 3 && (tolower((unsigned char)rp[0]) == 's')
&& (tolower((unsigned char)rp[1]) == 'p') ) {
rp++; rp++;
*p = skip(rp);
op->type = OP_GPR;
op->reg = 13;
return 1;
} else if ( len == 3 && (tolower((unsigned char)rp[0]) == 'i')
&& (tolower((unsigned char)rp[1]) == 'a') ) {
rp++; rp++;
*p = skip(rp);
op->type = OP_GPR;
op->reg = 14;
return 1;
} else if ( len == 6
&& (tolower((unsigned char)rp[0]) == 'f')
&& (tolower((unsigned char)rp[1]) == 'l')
&& (tolower((unsigned char)rp[2]) == 'a')
&& (tolower((unsigned char)rp[3]) == 'g')
&& (tolower((unsigned char)rp[4]) == 's')
) {
rp += 5;
*p = skip(rp);
op->type = OP_GPR;
op->reg = 14;
return 1;
}
/* It's not a register */
return 0;
}
rp++;
/* Get number */
if (len < 2 || sscanf(rp, "%u", &reg) != 1) {
return 0;
}
/* "%r0 .. %r15" are valid */
if (reg < 0 || reg > 15) {
return 0;
}
/* skip digits and return new pointer together with register number */
while ( isdigit((unsigned char)*rp) ) {
rp++;
}
*p = skip(rp);
op->type = OP_GPR;
op->reg = reg;
return 1;
}
/* Parses operands and reads expressions
* *p string
* len string length
* *op operand
* requires Type of operand expected
*/
int parse_operand(char *p, int len, operand *op, int requires)
{
op->type = NO_OP;
#ifdef OPERAND_DEBUG
fprintf(stderr, "parse_operand (reqs=%02x): \"%.*s\"\t",
(unsigned)requires, len, p);
#endif
/* Try to grab the register */
if (1 != parse_reg(&p, len, op) ) {
#ifdef OPERAND_DEBUG
fprintf(stderr, "imm\t");
#endif
/* Its not a register, should be a immediate value or a expression */
if(p[0]=='#') { /* Immediate value */
expr *tree;
#ifdef OPERAND_DEBUG
fprintf(stderr, "# ");
#endif
op->type = OP_IMM;
p=skip(p+1);
tree = parse_expr(&p);
if (!tree) { /* It's not a valid expresion */
return PO_NOMATCH;
}
op->value = tree;
} else { /* expresion that would be a immediate value */
#ifdef OPERAND_DEBUG
fprintf(stderr, "expr\t");
#endif
op->type = OP_IMM;
int parent=0;
expr *tree;
/*
if (*p=='(') {
parent=1;
p=skip(p+1);
}
*/
tree = parse_expr(&p);
if (!tree) { /* It's not a valid expresion */
return PO_NOMATCH ;
}
/* Inside of a ( ) */
/*
p=skip(p);
if(parent) {
if(*p!=')'){
cpu_error(0);
return 0;
} else
p=skip(p+1);
}
*/
op->value=tree;
}
}
#ifdef OPERAND_DEBUG
fprintf(stderr, "(type=%02x)\n", (unsigned) op->type);
#endif
if(requires == op->type) { /* Matched type */
return PO_MATCH;
}
return PO_NOMATCH; /* Ops! Not match */
}
/* Convert an instruction into a DATA atom including relocations,
if necessary. */
dblock *eval_instruction (instruction *p, section *sec, taddr pc)
{
/* Calc instruction size */
size_t size = instruction_size(p, sec, pc);
dblock *db = new_dblock();
mnemonic m = mnemonics[p->code];
unsigned char *opcode, *d; /* Data */
taddr val;
unsigned char ml_bits = 0;
unsigned char num_operands = 0;
unsigned char srn = 0; /* Size of Rn */
operand* rn = NULL;
symbol *base = NULL;
int btype;
#ifdef INSTR_DEBUG
fprintf(stderr, "eval_instruction code \"%s\" ", m.name);
#endif
num_operands += (m.operand_type[0] != NO_OP)? 1 : 0;
num_operands += (m.operand_type[1] != NO_OP)? 1 : 0;
num_operands += (m.operand_type[2] != NO_OP)? 1 : 0;
if (num_operands > 0) {
rn = p->op[m.ext.rn_pos];
}
#ifdef INSTR_DEBUG
fprintf(stderr, "P%d ", num_operands);
if (num_operands > 0)
fprintf(stderr, "rn type=%02x ", (unsigned) rn->type);
#endif
/* See if Rn is an immediate to set ML bits*/
if (rn != NULL && rn->type == OP_IMM) {
srn = opsize(rn, num_operands, sec, pc);
ml_bits = 2 | (srn == 4);
}
ml_bits = ml_bits << 6; /* Emplace ML bits */
#ifdef INSTR_DEBUG
fprintf(stderr, "IMM=%d ", srn);
fprintf(stderr, "ml %02x ", ml_bits);
#endif
db->size=size;
db->data = mymalloc(size); /* allocate for the data block */
memset(db->data, 0, db->size);
/* Here to write data ! */
d = db->data;
d[3] = m.ext.opcode; /* Common part */
d[2] = ml_bits;
switch (num_operands) {
case 3: /* format P3 */
/* Rn is always at the LSBytes side */
if( rn->type == OP_GPR) { /* Is a register */
d[0] = (rn->reg) & 0xF;
} else if (ml_bits == 0x80 ) { /* ML are 10 -> immediate */
eval_expr(rn->value, &val, sec, pc);
#ifdef INSTR_DEBUG
fprintf(stderr, "val %04x ", val);
#endif
d[1] = (val >>8) & 0x3F;
d[0] = (val ) & 0xFF;
} else { /* 32 bit immediate */
eval_expr(rn->value, &val, sec, pc);
#ifdef INSTR_DEBUG
fprintf(stderr, "val %08x ", val);
#endif
d[7] = (val >>24) & 0xFF;
d[6] = (val >>16) & 0xFF;
d[5] = (val >>8 ) & 0xFF;
d[4] = (val ) & 0xFF;
}
if (m.ext.rn_pos == 1) { /* Special case of STORE */
d[1] |= (p->op[0]->reg & 0xF) << 6;
d[2] |= (p->op[0]->reg & 0xF) >> 2;
d[2] |= (p->op[2]->reg) << 2; /* rd */
} else {
d[1] |= (p->op[1]->reg & 0xF) << 6;
d[2] |= (p->op[1]->reg & 0xF) >> 2;
d[2] |= (p->op[0]->reg) << 2; /* rd */
}
break;
case 2: /* format P2 */
if( rn->type == OP_GPR) { /* Is a register */
d[0] = (rn->reg) & 0xF;
} else if (ml_bits == 0x80 ) { /* ML are 10 -> immediate */
eval_expr(rn->value, &val, sec, pc);
/* CALL/JUMP stuff */
if (m.ext.opcode == 0x4B || m.ext.opcode == 0x4C ) {
val = val >> 2; /* CALL/JMP does a left shift of two bits */
}
#ifdef INSTR_DEBUG
fprintf(stderr, "val %06x ", val);
#endif
d[2] |= (val >>16) & 0x03;
d[1] = (val >>8) & 0xFF;
d[0] = (val ) & 0xFF;
} else { /* 32 bit immediate */
eval_expr(rn->value, &val, sec, pc);
#ifdef INSTR_DEBUG
fprintf(stderr, "val %08x ", val);
#endif
d[7] = (val >>24) & 0xFF;
d[6] = (val >>16) & 0xFF;
d[5] = (val >>8 ) & 0xFF;
d[4] = (val ) & 0xFF;
}
if (m.ext.rn_pos == 0) { /* Special case of STORE */
d[2] |= (p->op[1]->reg) << 2;
} else {
d[2] |= (p->op[0]->reg) << 2;
}
break;
case 1: /* format P1 */
if( rn->type == OP_GPR) { /* Is a register */
d[0] = (rn->reg) & 0xF;
} else if (ml_bits == 0x80 ) { /* ML are 10 -> immediate */
if (!eval_expr(rn->value, &val, sec, pc))
btype = find_base(rn->value, &base, sec, pc);
/* CALL/JUMP stuff */
if (m.ext.opcode >= 0x27 && m.ext.opcode <= 0x28 ) {
if (base != NULL && btype == BASE_OK) {
if (is_pc_reloc(base, sec))
add_extnreloc_masked(&db->relocs, base, val-4, REL_PC,
0, 22, 0, 0xfffffc);
else if (LOCREF(base))
val = val - pc - 4; /* Relative jump/call (%pc has been increased) */
base = NULL;
}
else
val = val - pc - 4; /* Relative jump/call (%pc has been increased) */
val = val >> 2; /* CALL/JMP does a left shift of two bits */
} else if (m.ext.opcode >= 0x25 && m.ext.opcode <= 0x26 ) {
if (base != NULL && btype != BASE_ILLEGAL) {
add_extnreloc_masked(&db->relocs, base, val,
btype == BASE_PCREL ? REL_PC : REL_ABS,
0, 22, 0, 0xfffffc);
base = NULL;
}
val = val >> 2; /* CALL/JMP does a left shift of two bits */
}
#ifdef INSTR_DEBUG
fprintf(stderr, "val %06x ", val);
#endif
d[2] |= (val >>16) & 0x3F;
d[1] = (val >>8) & 0xFF;
d[0] = (val ) & 0xFF;
} else { /* 32 bit immediate */
eval_expr(rn->value, &val, sec, pc);
/* CALL/JUMP stuff */
if (m.ext.opcode >= 0x27 && m.ext.opcode <= 0x28 ) {
val = val - pc - 4; /* Relative jump/call */
}
#ifdef INSTR_DEBUG
fprintf(stderr, "val %08x ", val);
#endif
d[7] = (val >>24) & 0xFF;
d[6] = (val >>16) & 0xFF;
d[5] = (val >>8 ) & 0xFF;
d[4] = (val ) & 0xFF;
}
break;
case 0: /* format NP */
#ifdef INSTR_DEBUG
fprintf(stderr, "NP ");
#endif
default:
;
}
#ifdef INSTR_DEBUG
{
int i;
for(i= db->size -1; i >= 0; i-- ) {
fprintf(stderr, "%02X ", d[i]);
}
}
fprintf(stderr, "\n");
#endif
return db;
}
/* Create a dblock (with relocs, if necessary) for size bits of data. */
dblock *eval_data(operand *op, size_t bitsize, section *sec, taddr pc)
{
dblock *new=new_dblock();
taddr val;
new->size = bitsize >> 3;
new->data = mymalloc(new->size);
#ifdef CPU_DEBUG
fprintf(stderr, "eval_data ");
#endif
if(op->type != OP_IMM) { /* ??? */
#ifdef CPU_DEBUG
fprintf(stderr, "!= OP_IMM\n");
#endif
ierror(0);
}
if(bitsize!=8 && bitsize!=16 && bitsize!=32) {
#ifdef CPU_DEBUG
fprintf(stderr, "bad data size\n");
#endif
cpu_error(2); /* Invalid data size */
}
if(!eval_expr(op->value, &val, sec, pc) ) {
symbol *base;
int btype;
btype = find_base(op->value, &base, sec, pc);
if (base)
add_extnreloc(&new->relocs, base, val,
btype==BASE_PCREL ? REL_PC : REL_ABS, 0, bitsize, 0);
else if (btype != BASE_NONE)
general_error(38); /* illegal relocation */
}
if(bitsize == 8){
new->data[0] = val & 0xFF;
} else if (bitsize == 16){
new->data[1] = (val>>8) & 0xFF;
new->data[0] = val & 0xFF;
} else if (bitsize == 32){
new->data[3] = (val>>24) & 0xFF;
new->data[2] = (val>>16) & 0xFF;
new->data[1] = (val>>8) & 0xFF;
new->data[0] = val & 0xFF;
}
return new;
}
/* Size of a operand
* *p operand
* num_operand Total number of operands
* */
static taddr opsize(operand *p, unsigned char num_operands, section *sec, taddr pc)
{
taddr val = 0;
if(!p) {
return 0;
} else if (p->type == OP_IMM ) {
eval_expr(p->value, &val, sec, pc);
if (num_operands == 3
&& (val < -8192 || val > 8191) ) { /* 14 bits */
return 4; /* 32 bit immediate */
} else if (num_operands == 2
&& (val < -131072 || val > 131071) ) { /* 18 bits */
return 4; /* 32 bit immediate */
} else if (num_operands == 1
&& (val < -2097152 || val > 2097151) ) { /* 22 bits */
return 4; /* 32 bit immediate */
}
}
return 0;
}
/* Calculate the size of the current instruction; must be identical
to the data created by eval_instruction. */
size_t instruction_size (instruction *p, section *sec, taddr pc)
{
size_t size = 4; /* four bytes */
unsigned char num_operands = 0;
num_operands += (p->op[0] != 0)? 1 : 0;
num_operands += (p->op[1] != 0)? 1 : 0;
num_operands += (p->op[2] != 0)? 1 : 0;
size += opsize(p->op[0], num_operands, sec, pc);
size += opsize(p->op[1], num_operands, sec, pc);
size += opsize(p->op[2], num_operands, sec, pc);
return size;
}
operand *new_operand()
{
operand *new = mymalloc(sizeof(*new));
new->type=-1;
return new;
}
/* return true, if initialization was successfull */
int init_cpu()
{
return 1;
}
/* return true, if the passed argument is understood */
int cpu_args(char *p)
{
/* no args */
return 0;
}
/* parse cpu-specific directives; return pointer to end of
cpu-specific text */
char *parse_cpu_special(char *s)
{
/* no specials */
return s;
}